quasiperiodic function - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

quasiperiodic function - traduction vers russe

MATHEMATICAL FUNCTION
Quasi-periodic function
  • 2π}}+sin(''x'') satisfies the equation ''f''(''x''+2π)=''f''(''x'')+1, and is hence arithmetic quasiperiodic.

quasiperiodic function         

математика

квазипериодическая функция

function of several variables         
  • A binary operation is a typical example of a bivariate function which assigns to each pair <math>(x, y)</math> the result <math>x\circ y</math>.
  • A function that associates any of the four colored shapes to its color.
  • Together, the two square roots of all nonnegative real numbers form a single smooth curve.
  • Graph of a linear function
  • The function mapping each year to its US motor vehicle death count, shown as a [[line chart]]
  • The same function, shown as a bar chart
  • Graph of a polynomial function, here a quadratic function.
  • Graph of two trigonometric functions: [[sine]] and [[cosine]].
  • right
ASSOCIATION OF A SINGLE OUTPUT TO EACH INPUT
Mathematical Function; Mathematical function; Function specification (mathematics); Mathematical functions; Empty function; Function (math); Ambiguous function; Function (set theory); Function (Mathematics); Functions (mathematics); Domain and range; Functional relationship; G(x); H(x); Function notation; Output (mathematics); Ƒ(x); Overriding (mathematics); Overriding union; F of x; Function of x; Bivariate function; Functional notation; Function of several variables; Y=f(x); ⁡; Draft:The Repeating Fractional Function; Image (set theory); Mutivariate function; Draft:Specifying a function; Function (maths); Functions (math); Functions (maths); F(x); Empty map; Function evaluation
функция нескольких переменных
empty function         
  • A binary operation is a typical example of a bivariate function which assigns to each pair <math>(x, y)</math> the result <math>x\circ y</math>.
  • A function that associates any of the four colored shapes to its color.
  • Together, the two square roots of all nonnegative real numbers form a single smooth curve.
  • Graph of a linear function
  • The function mapping each year to its US motor vehicle death count, shown as a [[line chart]]
  • The same function, shown as a bar chart
  • Graph of a polynomial function, here a quadratic function.
  • Graph of two trigonometric functions: [[sine]] and [[cosine]].
  • right
ASSOCIATION OF A SINGLE OUTPUT TO EACH INPUT
Mathematical Function; Mathematical function; Function specification (mathematics); Mathematical functions; Empty function; Function (math); Ambiguous function; Function (set theory); Function (Mathematics); Functions (mathematics); Domain and range; Functional relationship; G(x); H(x); Function notation; Output (mathematics); Ƒ(x); Overriding (mathematics); Overriding union; F of x; Function of x; Bivariate function; Functional notation; Function of several variables; Y=f(x); ⁡; Draft:The Repeating Fractional Function; Image (set theory); Mutivariate function; Draft:Specifying a function; Function (maths); Functions (math); Functions (maths); F(x); Empty map; Function evaluation

математика

пустая функция

Définition

surjective

Wikipédia

Quasiperiodic function

In mathematics, a quasiperiodic function is a function that has a certain similarity to a periodic function. A function f {\displaystyle f} is quasiperiodic with quasiperiod ω {\displaystyle \omega } if f ( z + ω ) = g ( z , f ( z ) ) {\displaystyle f(z+\omega )=g(z,f(z))} , where g {\displaystyle g} is a "simpler" function than f {\displaystyle f} . What it means to be "simpler" is vague.

A simple case (sometimes called arithmetic quasiperiodic) is if the function obeys the equation:

f ( z + ω ) = f ( z ) + C {\displaystyle f(z+\omega )=f(z)+C}

Another case (sometimes called geometric quasiperiodic) is if the function obeys the equation:

f ( z + ω ) = C f ( z ) {\displaystyle f(z+\omega )=Cf(z)}

An example of this is the Jacobi theta function, where

ϑ ( z + τ ; τ ) = e 2 π i z π i τ ϑ ( z ; τ ) , {\displaystyle \vartheta (z+\tau ;\tau )=e^{-2\pi iz-\pi i\tau }\vartheta (z;\tau ),}

shows that for fixed τ {\displaystyle \tau } it has quasiperiod τ {\displaystyle \tau } ; it also is periodic with period one. Another example is provided by the Weierstrass sigma function, which is quasiperiodic in two independent quasiperiods, the periods of the corresponding Weierstrass function.

Functions with an additive functional equation

f ( z + ω ) = f ( z ) + a z + b   {\displaystyle f(z+\omega )=f(z)+az+b\ }

are also called quasiperiodic. An example of this is the Weierstrass zeta function, where

ζ ( z + ω , Λ ) = ζ ( z , Λ ) + η ( ω , Λ )   {\displaystyle \zeta (z+\omega ,\Lambda )=\zeta (z,\Lambda )+\eta (\omega ,\Lambda )\ }

for a z-independent η when ω is a period of the corresponding Weierstrass ℘ function.

In the special case where f ( z + ω ) = f ( z )   {\displaystyle f(z+\omega )=f(z)\ } we say f is periodic with period ω in the period lattice Λ {\displaystyle \Lambda } .

Traduction de &#39quasiperiodic function&#39 en Russe